牛牛找工作
题目
为了找到自己满意的工作,牛牛收集了每种工作的难度和报酬。牛牛选工作的标准是在难度不超过自身能力值的情况下,牛牛选择报酬最高的工作。在牛牛选定了自己的工作后,牛牛的小伙伴们来找牛牛帮忙选工作,牛牛依然使用自己的标准来帮助小伙伴们。牛牛的小伙伴太多了,于是他只好把这个任务交给了你。
输入描述
每个输入包含一个测试用例。
每个测试用例的第一行包含两个正整数,分别表示工作的数量N(N<=100000)和小伙伴的数量M(M<=100000)。
接下来的N行每行包含两个正整数,分别表示该项工作的难度Di(Di<=1000000000)和报酬Pi(Pi<=1000000000)。
接下来的一行包含M个正整数,分别表示M个小伙伴的能力值Ai(Ai<=1000000000)。
保证不存在两项工作的报酬相同。
输出描述:
对于每个小伙伴,在单独的一行输出一个正整数表示他能得到的最高报酬。一个工作可以被多个人选择。
输入例子1:
3 3
1 100
10 1000
1000000000 1001
9 10 1000000000
输出例子1:
100
1000
1001
代码
1 |
|
被3整除
题目:
Q得到一个神奇的数列: 1, 12, 123,…12345678910,1234567891011…。
并且小Q对于能否被3整除这个性质很感兴趣。
小Q现在希望你能帮他计算一下从数列的第l个到第r个(包含端点)有多少个数可以被3整除。
输入描述:
输入包括两个整数l和r(1 <= l <= r <= 1e9), 表示要求解的区间两端。
输出描述:
输出一个整数, 表示区间内能被3整除的数字个数。
输入例子1:
2 5
输出例子1:
3
代码
1 |
|
安置路灯
题目:
小Q正在给一条长度为n的道路设计路灯安置方案。
为了让问题更简单,小Q把道路视为n个方格,需要照亮的地方用’.’表示, 不需要照亮的障碍物格子用’X’表示。
小Q现在要在道路上设置一些路灯, 对于安置在pos位置的路灯, 这盏路灯可以照亮pos - 1, pos, pos + 1这三个位置。
小Q希望能安置尽量少的路灯照亮所有’.’区域, 希望你能帮他计算一下最少需要多少盏路灯。
输入描述:
输入的第一行包含一个正整数t(1 <= t <= 1000), 表示测试用例数
接下来每两行一个测试数据, 第一行一个正整数n(1 <= n <= 1000),表示道路的长度。
第二行一个字符串s表示道路的构造,只包含’.’和’X’。
输出描述:
对于每个测试用例, 输出一个正整数表示最少需要多少盏路灯。
输入例子1:
2
3
.X.
11
…XX….XX
输出例子1:
1
3
代码
1 |
|
迷路的牛牛
题目
牛牛去犇犇老师家补课,出门的时候面向北方,但是现在他迷路了。虽然他手里有一张地图,但是他需要知道自己面向哪个方向,请你帮帮他。
输入描述:
每个输入包含一个测试用例。
每个测试用例的第一行包含一个正整数,表示转方向的次数N(N<=1000)。
接下来的一行包含一个长度为N的字符串,由L和R组成,L表示向左转,R表示向右转。
输出描述:
输出牛牛最后面向的方向,N表示北,S表示南,E表示东,W表示西。
输入例子1:
3
LRR
输出例子1:
E
代码
1 |
|
数对
题目
牛牛以前在老师那里得到了一个正整数数对(x, y), 牛牛忘记他们具体是多少了。
但是牛牛记得老师告诉过他x和y均不大于n, 并且x除以y的余数大于等于k。
牛牛希望你能帮他计算一共有多少个可能的数对。
代码
1 |
|
矩形重叠
题目
平面内有n个矩形, 第i个矩形的左下角坐标为(x1[i], y1[i]), 右上角坐标为(x2[i], y2[i])。
如果两个或者多个矩形有公共区域则认为它们是相互重叠的(不考虑边界和角落)。
请你计算出平面内重叠矩形数量最多的地方,有多少个矩形相互重叠。
1 |
|
牛牛的闹钟
题目
牛牛总是睡过头,所以他定了很多闹钟,只有在闹钟响的时候他才会醒过来并且决定起不起床。从他起床算起他需要X分钟到达教室,上课时间为当天的A时B分,请问他最晚可以什么时间起床
输入描述:
每个输入包含一个测试用例。
每个测试用例的第一行包含一个正整数,表示闹钟的数量N(N<=100)。
接下来的N行每行包含两个整数,表示这个闹钟响起的时间为Hi(0<=A<24)时Mi(0<=B<60)分。
接下来的一行包含一个整数,表示从起床算起他需要X(0<=X<=100)分钟到达教室。
接下来的一行包含两个整数,表示上课时间为A(0<=A<24)时B(0<=B<60)分。
数据保证至少有一个闹钟可以让牛牛及时到达教室。
输出描述:
输出两个整数表示牛牛最晚起床时间。
输入例子1:
3
5 0
6 0
7 0
59
6 59
输出例子1:
6 0
代码
1 |
|
牛牛的背包问题
题目
牛牛准备参加学校组织的春游, 出发前牛牛准备往背包里装入一些零食, 牛牛的背包容量为w。
牛牛家里一共有n袋零食, 第i袋零食体积为v[i]。
牛牛想知道在总体积不超过背包容量的情况下,他一共有多少种零食放法(总体积为0也算一种放法)。
输入描述:
输入包括两行
第一行为两个正整数n和w(1 <= n <= 30, 1 <= w <= 2 * 10^9),表示零食的数量和背包的容量。
第二行n个正整数vi,表示每袋零食的体积。
输出描述:
输出一个正整数, 表示牛牛一共有多少种零食放法。
输入例子1:
3 10
1 2 4
输出例子1:
8
例子说明1:
三种零食总体积小于10,于是每种零食有放入和不放入两种情况,一共有222 = 8种情况。
代码
1 |
|